

DFT Studies of the ORR Activity of Carbon Encapsulated Fe₃C

H.A. Hansen, M. Reda, T. Vegge

Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark

<u>heih@dtu.dk</u>

Keywords: Oxygen Reduction Reaction, Density Functional Theory

CarbonbasedcatalystscontainingFe-N₄C_N active sites have shownactivity for the oxygenreductionreaction (ORR) comparable to platinum in acidelectrolytesatlowcurrentdensities.^[1-3]Thesecatalysts, however, require highloading to achieve the current densities desired for fuel cell applications. Improvements in volumetricactivity are therefore needed to the reducemass transport limitations of the thick catalyst layer. Furthermore, long-termstability and suppression of H₂O₂selectivity need to be addressed. Graphite encapsulated Fe₃C was recently suggested to be a durable ORR catalyst without nitrogen containing active sites.^[2]

Here, we use atomic-scaledensity functional theory to investigate the pathway for O_2 reduction to H_2O_2 and H_2O on extended model surfaces of a Fe₃C-graphite catalyst in order to elucidate effects of catalyst doping, strain, thickness and quality of the encapsulating graphitic layers.

We find Fe_3C significantly increase the activity of graphite zigzag edges, whereas the activity of nitrogen free graphite basal planes is comparatively unaffected by the presence of Fe_3C .

Acknowledgements

This workisfunded by Innovation FundDenmarkthrough4106-00012A (NonPrecious) Initiative Towards Non-PreciousMetalPolymer Fuel Cells.

REFERENCES

- [1] G. Wu, K. L. More, C. M. Johnston, P. Zelenay, *Science***2011**, *332*, 443–7.
- [2] Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, *Angew. Chem. Int. Ed. Engl.***2014**, *53*, 3675–9.
- [3] M. Lefevre, E. Proietti, F. Jaouen, J.-P. Dodelet, *Science* (80-.).2009, 324, 71–74.